Robotics Academy Blog  

Archive for the ‘cortex’ tag

Which Robotics Kit Should I Use? VEX Edition

without comments

VEXiq-109Now more than ever, robotics educators are faced with the important question of which kit they should purchase and use. This key question has been made even more intricate in the 2013-2014 school year due to the addition of the new robotics kits, VEX IQ kits. This article will help break down each VEX kit, their capabilities and target audiences, and allow you, the educator, to make an informed decision on which kit is best for your particular classroom.

The VEX IQ system is the brand-new robotics system from Innovation First International (IFI for short, makers of the VEX Robotics Design System). The VEX IQ can be used with any of the all-new hardware and sensors, including a unique plastic snap-fit structural system.

 

 

 

 

  • Sensors include a gyroscope, color sensor, potentiometer, touch LED, and ultrasonic sensor.
  • The base kits (either Sensor or Controller kits) are provided with over 650 structural components, 4 plug-and-play ‘smart motors’, at least 2 touch sensors (or more, depending on kit), and the VEX IQ microcontroller (more information on all available kits can be found here).
  • The IQ contains 12 smart ports that can be used to control either analog sensors, digital sensors, or servos/motors; the ports are non-typed and can be used to control any piece of VEX IQ compatible hardware that is plugged into it.
  • It also includes a micro-USB port for IQ-to-computer communication and a ‘tether’ port for direct connections to an VEX IQ Controller.
  • Debugging and programming information can be displayed on the backlit LCD information to increase ease-of-use in real time.
  • Wireless communication between the VEX IQ microcontroller and a VEX IQ controller is provided via a set of 900 MHz radio adapters.
  • The VEX IQ system will be fully legal in the new VEX IQ Challenge (designed specifically for the VEX IQ system), for students ages 8-14.
  • Recommended use: Middle School.

cortex robotOne of the mainstays of the educational robotics world is the VEX Cortex platform. Originally released in 2010 by IFI, the Cortex can be used with the VEX Robotics Design System’s hardware and sensors.

  • Includes over 300 metal structural parts, 4 powerful DC motors, the VEX Cortex microcontroller, and a wide variety of fasteners, gears, and other miscellaneous hardware.
  • Sensors include touch sensors, an ultrasonic sensor, integrated motor encoders, line following sensors, and a potentiometer; additional sensors are available outside of the base kits.
  • Wireless communication between a VEX Cortex and a VEXNet Joystick Controller is possible by using the 802.11b/g VEXNet USB Adapter Keys.
  • The VEX Cortex system can be used in the VEX Robotics Challenge (Middle, High School, and College divisions).
  • Recommended use: advanced Middle School, High School or College.

We understand that choosing a robotics kit is a tough decision. The number one factor in determining which kit is right for you is the students; depending on the skill level of the students, it may be better to challenge them with a more advanced kit (VEX Cortex) or they made need to start with a simpler kit (VEX IQ.) No matter which kit you decide to use, though, you can rest easy knowing ROBOTC will fully support all of these platforms.

- John Watson

 

Traversing a Grand Challenge with the VEX Cortex

without comments

rand-challenge-300×225.jpg” alt=”" width=”300″ height=”225″ />The Grand Challenge is a staff designed course which is not revealed to viagra sales participants until the day of the competition. Before the competition, participants are provided with a list of conditions and situations to prepare their robots for.

On the day of the competition, the participant’s programming knowledge and preparation are put to the test as they work to traverse the course in a limited amount of time. The robot that makes the most progress without stalling out or deviating from the course wins!

In this iteration of the Grand Challenge, the Cortex-based robot must:

  • Navigate an obstructed path using feedback from the Shaft Encoders and Ultrasonic Rangefinder
  • Track an incomplete line up and down a ramp using feedback from the Line Tracking

    sensors

  • (Optional) Pick up the yellow ball and take it to the finish zone for extra points
  • Respond to remote-control commands only in the final zone
  • Avoid hitting obstacles in it’s path, walls on the field, and falling from the ramp

Check out this cool video of the robot completing the course.

To accomplish it’s task, the Cortex-based robot is equipped with:

  • Two driving motors, each with a Shaft Encoder
  • An Omni-wheel acting as a rear-caster wheel
  • Three Line Tracking Sensors
  • An Ultrasonic Rangefinder
  • Remote Control over VEXnet

Instructions for building this robot can be found here.

If you’d like ideas for creating your own Grand Challenge, check out this document for some inspiration.

Note: All materials are part of the VEX Cortex Video Trainer. Check it Out!

Written by Jesse Flot

November 3rd, 2010 at 11:40 am

Posted in ROBOTC

Tagged with , , , ,